Inactivation of retroviruses with preservation of structural integrity by targeting the hydrophobic domain of the viral envelope.
نویسندگان
چکیده
We describe a new approach for the preparation of inactivated retroviruses for vaccine application. The lipid domain of the viral envelope was selectively targeted to inactivate proteins and lipids therein and block fusion of the virus with the target cell membrane. In this way, complete elimination of the infectivity of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) could be achieved with preservation of antigenic determinants on the surface of the viral envelope. Inactivation was accomplished by modification of proteins and lipids in the viral envelope using the hydrophobic photoinduced alkylating probe 1,5 iodonaphthylazide (INA). Treatment of HIV and SIV isolates with INA plus light completely blocked fusion of the viral envelope and abolished infectivity. The inactivated virus remained structurally unchanged, with no detectable loss of viral proteins. Modifications to envelope and nucleocapsid proteins were detected by changes in their elution pattern on reverse-phase high-performance liquid chromatography. These modifications had no effect on primary and secondary structure epitopes as determined by monoclonal antibodies. Likewise, the inactivated HIV reacted as well as the live virus with the conformation-sensitive and broadly neutralizing anti-HIV type 1 monoclonal antibodies 2G12, b12, and 4E10. Targeting the lipid domain of biological membranes with hydrophobic alkylating compounds could be used as a general approach for inactivation of enveloped viruses and other pathogenic microorganisms for vaccine application.
منابع مشابه
A metastable form of the large envelope protein of duck hepatitis B virus: low-pH release results in a transition to a hydrophobic, potentially fusogenic conformation.
We have examined the structure and fusion potential of the duck hepatitis B virus (DHBV) envelope proteins by treating subviral particles with deforming agents known to release envelope proteins of viruses from a metastable to a fusion-active state. Exposure of DHBV particles to low pH triggered a major structural change in the large envelope protein (L), resulting in exposure of trypsin sites ...
متن کاملEfficient HIV-1 replication can occur in the absence of the viral matrix protein.
Matrix (MA), a major structural protein of retroviruses, is thought to play a critical role in several steps of the HIV-1 replication cycle, including the plasma membrane targeting of Gag, the incorporation of envelope (Env) glycoproteins into nascent particles, and the nuclear import of the viral genome in non-dividing cells. We now show that the entire MA protein is dispensable for the incorp...
متن کاملThe membrane-proximal intracytoplasmic tyrosine residue of HIV-1 envelope glycoprotein is critical for basolateral targeting of viral budding in MDCK cells.
Budding of retroviruses from polarized epithelial Madin-Darby canine kidney cells (MDCK) takes place specifically at the basolateral membrane surface. This sorting event is suspected to require a specific signal harbored by the viral envelope glycoprotein and it was previously shown that, as for most basolateral proteins, the intracytoplasmic domain plays a crucial role in this targeting phenom...
متن کاملA versatile and potentially general approach to the targeting of specific cell types by retroviruses: application to the infection of human cells by means of major histocompatibility complex class I and class II antigens by mouse ecotropic murine leukemia virus-derived viruses.
A technique for delivering genes carried by recombinant retroviruses into specific cell types could have numerous applications in oncology, developmental biology, and gene therapy. As a first step toward this remote goal we designed a procedure allowing in vitro cell targeting by retroviruses. Biotinylated antibodies against the viral envelope protein on one side, and against specific cell memb...
متن کاملThe Effects of Novel Mutations in A1 Domain of Human Coagulation Factor VIII on Its Secretion Level in Cultured Mammalian Cells
Inefficient secretion of the human coagulation factor (hFVIII) in mammalian expression systems is one ofthe main causes of the hFVIII low expression level, attributed to its interaction with a chaperone known asBiP/GRP78. In order to improve secretion efficiency of the hFVIII, based on the higher secretion level of theporcine FVIII and analysis of the hFVIII A110 region, that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 79 19 شماره
صفحات -
تاریخ انتشار 2005